tan-1x2 + cot-1x2 = 5π28 ⇒ 

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

61.

tan-1x2 + cot-1x2 = 5π28  x = 

  • - 1

  • 1

  • 0

  • π58


A.

- 1

Given equation istan-1x2 + cot-1x2 = 5π28 tan-1x2 + cot-1x2 - 2tan-1xcot-1x = 5x28 tan-1x + cot-1x = π2  π24 - 2tan-1xπ2 - tan-1x = 5π28 - 2 . πtan-1x2 + 2tan-1x2 = 5π28 - π24 tan-1x2 - πtan-1x2 = 3π216 tan-1x = π2 ± π24 + 3π242 tan-1x = π2 ± π2                   = 3π4, - π4 x = tan3π4, tan- π4 x = - 1, - 1


Advertisement
62.

For 0 < x  π, sinh-1cotx = ?

  • logcotx2

  • logtanx2

  • log1 + cotx

  • log1 + tanx


63.

a + xa - x + a - xa + xdx = ?

  • 2sin-1xa + c

  •  2asin-1xa + C

  •  2cos-1xa + C

  •  2acos-1xa + C


64.

If sin8x - cos8x1 - 2sin2xcos2xdx = Asin2x + B, then A = ?

  • - 12

  • - 1

  • 12

  • 1


Advertisement
65.

1 + cos4xcotx - tanxdx

  • - 14cos4x + C

  • 18cos4x + C

  • 14sin4x + C

  • - 18cos4x + C


66.

The area (in square units) of the region bounded by the curves x = y2 and x = 3 - 2y2 is

  • 32

  • 2

  • 3

  • 4


67.

If In = 0π4tann for n = 1, 2, 3 . . . , then In + 1 + I n + 1 = ?

  • 0

  • 1

  • 1n

  • 1n + 1


68.

Let f0 = 1, f0.5 = 54, f1 = 2, f1.5 = 134,  and f2 = 5. Using Simson's rule,02fxdx = ?

  • 143

  • 76

  • 149

  • 79


Advertisement
69.

The solution of the differential equation dydx = yx + ϕyxϕ'yx is

  • yx = k

  • ϕyx = kx

  • yx = k

  • ϕyx = ky


70.

If y = y(x) is the solution of the differential equation 2 + sinxy + 1dydx + cosx = 0 then y(π2)is equal to

  • 13

  • 23

  • 1

  • 43


Advertisement