tan-1x2 + cot-1x2 = 5π28 ⇒ x =
- 1
1
0
π58
A.
Given equation istan-1x2 + cot-1x2 = 5π28 tan-1x2 + cot-1x2 - 2tan-1xcot-1x = 5x28 ∵tan-1x + cot-1x = π2 ⇒ π24 - 2tan-1xπ2 - tan-1x = 5π28⇒ - 2 . πtan-1x2 + 2tan-1x2 = 5π28 - π24⇒ tan-1x2 - πtan-1x2 = 3π216∴ tan-1x = π2 ± π24 + 3π242⇒ tan-1x = π2 ± π2 = 3π4, - π4⇒ x = tan3π4, tan- π4⇒ x = - 1, - 1
For 0 < x ≤ π, sinh-1cotx = ?
logcotx2
logtanx2
log1 + cotx
log1 + tanx
∫a + xa - x + a - xa + xdx = ?
2sin-1xa + c
2asin-1xa + C
2cos-1xa + C
2acos-1xa + C
If ∫sin8x - cos8x1 - 2sin2xcos2xdx = Asin2x + B, then A = ?
- 12
12
∫1 + cos4xcotx - tanxdx
- 14cos4x + C
18cos4x + C
14sin4x + C
- 18cos4x + C
The area (in square units) of the region bounded by the curves x = y2 and x = 3 - 2y2 is
32
2
3
4
If In = ∫0π4tanndθ for n = 1, 2, 3 . . . , then In + 1 + I n + 1 = ?
1n
1n + 1
Let f0 = 1, f0.5 = 54, f1 = 2, f1.5 = 134, and f2 = 5. Using Simson's rule,∫02fxdx = ?
143
76
149
79
The solution of the differential equation dydx = yx + ϕyxϕ'yx is
xϕyx = k
ϕyx = kx
yϕyx = k
ϕyx = ky
If y = y(x) is the solution of the differential equation 2 + sinxy + 1dydx + cosx = 0 then y(π2)is equal to
13
23
43