If the slope of y = 3x2 + ax3 is maximum at x = 12, then the

Subject

Mathematics

Class

JEE Class 12

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

21.

If the slope of y = 3x2 + ax3 is maximum at x = 12, then the value of a is

  • 2

  • 1

  • - 1

  • - 2


D.

- 2

Given curve is

y = 3x2 + ax3

On differentiating w.r.t. x, we get

dydx = 6x + 3ax2 = mNow, differentiating Eq. (i) w.r.t. x, we getdmdx = 6 +6axand d2mdx2 = 6aFor maximum or minimum of m,put dmdx = 0  6 + 6ax = 0 x = - 1a < 0But given m is maximum at x = 12. - 1a = 12  a =  -2


Advertisement
22.

If y = 4x - 5 is a tangent to the curve y = px3 + q at (2, 3), then (p + q) is equal to

  • - 5

  • 5

  • - 9

  • 9


23.

The point on the curve y = 5 + x - x2 at which the normal makes equal intercepts is

  • (1, 5)

  • (0, - 1)

  • (- 1, 3)

  • (0, 5)


24.

If the point (a, b) on the curve y = x is close to the point (1, 0), then the value of ab is

  • 12

  • 22

  • 14

  • 24


Advertisement
25.

The image of the interval [- 1, 3] under the mapping f : R  R given by f(x) = 4x3 - 12x is

  • [8, 72]

  • [0, 72]

  • [- 8, 72]

  • [0, 8]


26.

If n(A) = 43, n(B) = 51 and n(A ∪ B) = 75, then n[(A - B) (B - A)] is equal to

  • 53

  • 45

  • 56

  • 66


27.

If p and q are non-collinear unit vectors and p + q = 3, then (2p - 3q) · (3p + q) is equal to

  • 0

  • 13

  • - 13

  • - 12


28.

The triangle formed by the three points whose position vectors are 2i + 4j - k, 4i + 5j + k and 3i + 6j - 3k, is

  • an equilateral triangle

  • a right angled triangle but not isosceles

  • an isosceles triangle but not right angled triangle

  • a right angled isosceles triangle


Advertisement
29.

If (1, 2, 4) and (2, - 3λ, - 3) are the initial and terminal points of the vector i + 5j - 7k, then the value of λ is

  • 73

  • - 73

  • - 53

  • 53


30.

Let u = 5a + 6b + 7c, v = 7a - 8b + 9c and w = 3 a + 20b + 5c, where a, b and c are non-zero vectors. If u = lv + mw, then the values of l and m respectively are

  • 12, 12

  • 12, - 12

  • - 12, 12

  • 13, 13


Advertisement